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The aim of this project is to diagnose and remedy a computational bottleneck that exists within a
machine learning model used by Prof. Zhiru Zhang’s research group — an application of logistic
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Executive Summary

This project began as a foray into quantitatively analyzing the behavior of a GPU for the execution
of an optimization algorithm developed by a previous student to train a spam-filter. The application
of spam-filtering described in this project is a prototypical example of the use of logistic regression
(LR). The goal was specifically to gain an understanding of and characterize the behavior of a GPU
to discover any potential bottlenecks that yielded poor performance on this Machine Learning (ML)
model. The previous attempt to optimize a parallel-reduction Stochastic Gradient Descent (SGD)
optimization resulted in indeterminate accuracy, interminable execution, and undefined behavior
which was wrongly attributed to thread divergence.

This project therefore evolved from trying to gain an understanding of the GPU behavior to
discovering a deeper flaw within the previous implementation of the algorithm itself. One main
accomplishment of this project was therefore in diagnosing and resolving this algorithmic issue from
a prior implementation of a parallel map-reduce algorithm in CUDA.

This document covers the background research and design exploration involved in the approach
towards resolving a critical bug in the spam-filter and subsequently obtaining tangible results. This
paper also explores the design considerations of parallel-programming models and suggests methods
for profiling behavior on a complex system which abstracts much of its compute functionality.
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1. Introduction

Training of machine learning (ML) algorithms is computationally intensive involving millions of
linear arithmetic operations on large-scale datasets over many iterations in the training phase of a
model. These computations are often simple and need to be redundantly applied across
multidimensional vectors or tensors of data. SIMD (single-instruction multiple-data) processors have
been integrated into modern architectures, including CPUs, and allow for fast computation of one
operation across a data-point. These cores are fundamental to the operation of GPUs (Graphical
Processing Units) built originally for compute-intensive graphics applications. GPUs are now being
applied to training and inference of machine learning models because of their ability to parallelize
vector computations across hundreds of SIMD cores. My goal for this project is to exploit these
sophisticated microarchitectural units to accelerate the learning phase of an ML model by using a
parallel-programming approach on a GPU.

Optimization over convex objective (loss) functions for linear ML models is highly suited for
parallel computation on GPUs since the main compute step involves a basic vector dot product with
map-reduce logic. An application suited for logistic regression is spam-filtering for emails —
determining whether a Bag of Words (BoW) falls under one of two classes: spam or ham. Prof.
Zhang’s research group has developed a spam-filter using a logistic regression algorithm. A form of
gradient-based stochastic optimization (SGD) is applied to this model using SIMD cores on an Intel
CPU in addition to mini-batch stochastic gradient descent (MBGD) both using an open-source
linear algebra API. In this project, I implement a parallel mapping and reduction algorithm capable
of speeding up various SGD optimizations over objective functions to train the spam-filter.

As a result of my work, the spam-filter model is able to be trained with fewer user-defined
computations in less wall-clock time without affecting test error-rate. By taking a low-level parallel
programming approach to this and various other models that apply gradient-descent, we may gain a
better understanding of the computational bottlenecks that exist on GPUs. The end result in
applying such an optimization is that this approach may increase the multi-modal efficiency of the
spam-filter and similar models alike.
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2. Design Problem
In the following section, I provide a background for the problem addressed and outline the
algorithmic methodology and systems used to address this problem.

2.1 Motivation

The machine learning (ML) application considered in this project is a spam-filter. Spam-filters are
ubiquitous in any email platform since they help reject unsolicited mail that clutters our inboxes.
These filters act as classifiers to determine, based on the content and sender of the email, whether or
not the message belongs to two categories: spam or ham (not spam). The filter is able to accomplish
this because it has foreknowledge of what emails in these categories look like based on a training
process that considers vast amounts of prior spam/ham emails. Spam emails constantly shape-shift
and are becoming more difficult to classify. A high-performance model is therefore necessary to
adapt to the changing email landscape in which spammers attempt to outsmart users and infect host
machines.

2.2 Background

ML algorithms come in many shapes and sizes, however, they may be generally divided into two
sub-disciplines (supervised and unsupervised) and further divided into two sub-tasks (training and
testing). Supervised ML is a highly-researched sub-discipline that involves intervention by an
external authority to provide “labels” for training data that, through an optimization process,
characterize a model via a set of learned parameters. This trained model serves as a representation of
some underlying, God-given probability distribution. Therefore, with a trained model, one is able to
automate the classification or regression of unseen data that are theoretically derived from the same
distribution. Below, I outline this process for the model considered in this project.

Training Testing (Inference)
Loss L
/ Function Prediction Trained
N ~C / Parameters
min )" fxis yi) §=f(x6)
/ i=1

raining
Examples:

Model Datum + Unseen

Parameters Label Input

Figure 1: Generalization of the supervised ML approach. Left: The convex (or non-convex)
optimization objective which seeks to minimize some function fover n-dimensional vectors x (input
data) and y (labels). Right: Making prediction with learned model 0, function £, and unseen data x.

2.2.1 Logistic Regression as an ML Model
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Logistic Regression (LR) is an example of a learning technique that models a sigmoidal distribution

usually for binary decision-making. More specifically, the model consists of a logistic hypersurface fit

to a set of points with binary labels: positive (1) or negative (0), in this case, spam or ham,

respectively. This hypersurface is learned through a routine known as ‘training.” Once this model is

obtained after training is complete, the filter can be applied to subsequent emails via the the

following procedure (testing):

1.

The input to the filter is a raw email message. This message is known as a Bag of Words
(BoW) since it is an unsorted vector of textual data.

Raw messages are transformed into feature vectors which are simplified representations of
the email. This feature extraction from the BoW is intended to reduce the dimensionality of
the input to the filter. This occurs through a process known as ‘hashing” where each word is
passed through a function that maps it to some numerical value. The hash function is a
frequency counter for this application (histogram generator), however, it could represent any
function that groups similar (or dissimilar) words to buckets. The number of buckets is

similarly customizable.

cooo0o000
ONNOOPRMO

test ——

~— —

- 0.2

frequencies

hash function buckets (features)

Figure 2: Visualizing feature extraction. Raw data in the form of a BoW is sorted into buckets

representing the frequency of occurrence of any similar words!!,

The features for this particular email are provided as input to the LR model which outputs a
value between 0 and 1. This regressed value can be interpreted as the probability that the
input email is spam. This classification occurs based on a threshold value which is usually set
to 0.5. Values below this are not considered spam.
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Figure 3: Visualizing the inference (classification) phase of a spam-filter!'.
2.2.2 Optimizing the Model

The described procedure is made possible through a training phase of the LR model. The purpose
of this training phase is to learn the parameters that fit a multidimensional sigmoidal distribution
defined by the following equation:

me(x) = 0(x-0) = T—=

This verbally translates to: “The probability that data point x belongs to the positive class given
parameter vector 6. ” The positive class is spam, the data point is the n-dimensional input feature
vector, and 0 is the n-dimensional parameter vector learned during training, described below. It is
important to note that this operation includes a vector dot-product between x and 6. Such an
operation would involve performing an element-wise multiplication (map) and sum across all entries
(reduce) to yield a single numerical result:

X 0:X0*(90 + x *(97 +X2*(92+X3*03+ v X0 *0,;.1
Generating this model, specifically the parameter vector 6, involves minimizing a loss function that
describes the distance between the model prediction and reality. The loss function chosen previously

for this application is the negative log-likelihood for the Bernoulli distribution of the labels Y given
X, and parameterized by 61"

1©) = —In (|| [omoGe)(1 = mo@)' ) = = > yimo(r) + (1 = y)(1 = M)
i=1 i=1

Throughout the training process, this loss is used to continually update the model weights, or the
entries of 0, until some convergence condition is satisfied. This process is known as Gradient
Descent.
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2.2.3 Gradient Descent (GD)

Gradient Descent is used to update the model weights of the parameter vector little-by-little through
stepping in the direction of steepest descent for the loss function. The size of this step is determined
the ‘learning-rate’, a meta-parameter 1] used in the update step: O+1 = 0, - ng(0). The steepest

direction is determined by taking the gradient of L(0) with respect to the parameter vector to obtain:

8(6) = VoL(OIX, V) = ) (mg(x) = y))x;
i=1

It is also important to note that this operation includes making a prediction ns which involves the
same vector dot product described in section 2.2.2. If these are high-dimensional vectors which
serve as operands to a single multiply-accumulate (MAC) module on an unoptimized CPU, this
computation alone could be extremely expensive in terms of wall-clock runtime. Luckily, most
modern processors are optimized to account for these types of operations through the use of SIMD
(single-instruction, multiple-data) cores.

2.2.4 Stochastic Gradient Descent (SGD)

The above method describes a form of GD called Batch Gradient Descent (BGD) which uses the
whole training set to determine the gradient of the loss function before the parameter vector is
updated. An alternative form of gradient descent, SGD, was applied in this application to add
stochasticity to the update step as well as speed up gradient computation. As opposed to GD, SGD
draws a single training data point randomly from the available training set to compute the gradient
of loss on each update of the parameter vector. This stochastic update is known to help the model
converge faster to a desired minimum loss™.

A A
‘
o1 4 o E
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o ¢ 0 ” )2

Figure 4: Visualizing the convergence pattern of BGD (left) and SGD (right) to a single minimum in
dark blue!".

Alternatively, there is the option to execute a mini-batch SGD (MBGD) which, rather than use the
entire training set or single data point, uses a few random data points to calculate gradient. While
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this is an optimal medium between the above two described approaches, this paper focuses on the
employment of SGD for algorithmic simplicity.

2.2.5 Utility of a GPU

With a reasonable-size dataset, the training of LR can be performed on a conventional CPU with
few drawbacks in efficiency. However, most ML practitioners have begun to realize that more data
equals better test accuracy. It has therefore become imperative that the ML industry move towards
hardware capable of accommodating larger and larger datasets in order to reduce the overhead of
applying compute-intensive training on ML models at scale.

A Central Processing Unit (CPU) is the term coined to describe a general-purpose processor
typically found in most personal computers and embedded systems today. CPUs are optimized for
complex control flow as they must be able to execute a wide array of programs that abstract away
details about the CPU microarchitecture itself. These devices typically have very few cores (1-8) with
complex cache hierarchies that work well for non-uniform memory accesses. Such devices may be
well-suited for ML algorithms with small or medium-sized datasets, however, as a dataset expands in
size and the number of parameters required in a model increases, both training and inference
(testing) start to take a hit in efficiency.

As an alternative, ML practitioners have looked to Graphical Processing Units (GPUs) to train and
test their models. As opposed to CPUs, GPUs have many more cores - simpler in design - grouped
together in a Streaming Multiprocessor (SM) model. GPUs were built originally for compute-
intensive graphics applications requiring massive amounts of matrix operations. Because of its
immense number of cores, a GPU is capable of performing many simple arithmetic operations in
parallel per cycle. As it became apparent that ML models required similar levels of large-scale
operations, practitioners began looking to GPUs to accelerate their algorithms.

Mului rrrrrrrr Mumimcessur 2
u u @Mum o @Mum o
u m’““‘ s @Mum -

Figure 5: Visualizing a CPU (left) and GPU (right)P.

GPU

One should note that the most computationally expensive operation performed in the GD
optimization for this application, a vector dot-product, is highly parallelizable”. Each entry of x and
g for any single step is independent of one another. Because of this, each dot-product entry may be
computed simultaneously - a fitting task for a GPU. Such a distributed computation is known as a
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‘map-reduce’ where individual vector elements are distributed (mapped) to worker threads that each
perform one or more multiplication operations. The final dot-product is computed when the thread
workers’ results are summed (reduced) to a single numerical answer. This reduction step may also be
performed in parallel by several but fewer threads depending on the size of the original vector
operands.

to t ta ts

Xo, Yo X3 Y1 X2 Y2 X3 ¥3
Xs' ¥s Xe ¥ X7 Y7 Xg Ya

Zq 2, z, 25
® ®
]

dot

Figure 6: Visualizing a map-reduce operation for vectors x - y. Each thread computes and sums two
dot-product entries. Then, the resulting z’s are summed by another thread, then once more to

compute a final result!".
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3. Approach
In the following section, I detail the system used in this project, software design, and the various
approaches toward obtaining tangible results.

3.1 System Overview

A typical GPU is setup as a co-processor to a CPU. The CPU begins execution of a program and
dispatches data to the GPU which performs some computations and returns a result back to the
CPU. For the purpose of the spam-filter, training occurs when data points stored on the CPU are
sent to the GPU which executes a prediction and parameter vector update. This process is outlined
in a block diagram below.

GPU Streaming Multiprocessor

—

-
) Warp = 32 threads

Multiple warps in
SM sum

independent
Xia X X X

elements of X,

N
SM SM M [SQ _
\\
~ _ Atomic adds
~ .
~ into shared
|

mem

SM SM SM
\ J WX\G“‘ Single thread sum N
' y— reduce across Z f(x;8,yi)
4500 Training Samples 0 _ N shared mem i=1
Update parameter vector min Z f(x;0,y0)

Figure 7: Block diagram of the spam-filter training process.

Training set feature vectors are distributed across GPU streaming multiprocessors (SM). Each SM is
allocated a block of shared memory and is capable of executing 32 worker threads in parallel, known
as a ‘warp’. In this application, these worker threads are responsible for performing element-wise
multiplications for one or more vector dot-products depending on how many data points x; are
chosen to be dispatched at-once. Next, a gradient is calculated to perform the update step of SGD.
In order to update the parameter vector, each thread that computes a dot-product has to perform a
read-modify-write operation on the feature vector 6. The feature vector is therefore a shared
resource and must only be acted upon in an atomic fashion by any one thread.

3.1.1 Dataset
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The full dataset contains 5000 data points of 1024 elements (dimensions) each. This is split among a
training and test set. The training data set consists of 4500 feature vectors and the test set consists of
500.

3.2 Software Design

The software written for this project was in CUDA, a language developed by NVIDIA for use on its
GPUs. CUDA is similar in syntax to C++, however, it includes additional functionality for
interfacing with the GPU device.

3.2.1 The Parallel-Programming Model

A CUDA program is written in a manner that logically divides up work between a CPU and GPU.
In order to invoke GPU functionality, a CPU would perform a ‘kernel call’ - not to be confused with
the kernel of an Operating System. The kernel is provided several arguments including a grid-size,
block-size, and optional shared-memory size akin to calling a ‘function’ as follows:

kernel_name <<<grid_size, block_size, shared_mem_size >>

The GPU divides up threads into a set of multidimensional ‘blocks’ which have a shared-memory.
These blocks are organized in a multidimensional ‘grid’ which may access a global memory
accessible across blocks. In this way, the user does not have to worry about the distribution of work
within the GPU hardware and may refer to any one thread by its cartesian coordinate by the user-
defined grid and block location.

3.2.2 Existing Framework

Prior to implementing the optimized parallel map-reduce algorithm I spent time learning the existing
framework created by Gustavo Angarita, a former PhD student in the Computer Systems
Laboratory. Gustavo had implemented a C++ version of various GD algorithms for a CPU using an
open-source linear algebra API known as OpenBLAS (basic linear algebra sub-program). Where
possible, this library exploits the capabilities of a modern CPU to perform SIMD operations which
make large-scale vector computations highly efficient. The overall training process worked as
follows:

// Ignore the first run to discard initialization overhead
training_function(training_set, training options);

// Shuffle vectors and train num_runs times, then average results
for (size_t k = 0; k < benchmark_options.num_runs; k++) {

// reset parameter vector to forget previous training

resetParameters(training_set, training_options);

// shuffleKeyValue(data_points, labels, num_points_total, num_features);
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training_timer.start();
training_function(training_set, training_options);
training_time += training_timer.stop();

// Get Training error
computeErrorRate(training_set, &train_errors);

// Get Testing error
computeErrorRate(testing_set, &test_errors);

// reset configuration parameters
*training_options.step_size = Training_options.config_params["initial_step_size"];

training_time /= benchmark_options.num_runs;
scaleErrorDict(&train_errors, 100.0 / benchmark_options.num_runs);
scaleErrorDict(&test_errors, 100.0 / benchmark_options.num_runs);

This top-level code initializes a wall-clock timer, and iterates through a set of runs (30) where on
each run the particular training function (SGD, MBGD) is a called via a function pointer passed in
as an argument to the method wrapping the above code. The average test error and training time is
computed and averaged across all the runs to yield a result to the user. This training function is
defined by the user for any type of training - whether it be a BLAS implementation of GD for a
CPU or a CUDA implementation of GD that launches a kernel call to operate on a GPU. However,
in each training function, multiple epochs are executed until a convergence condition, specified by
the user, is satisfied. One epoch represents a single use of the entire training set to do gradient
calculations. The convergence condition is a limit on the maximum allowable test accuracy
computed after each run.

3.3 Debugging a GPU

The three-word title of this section may cause the novice GPU-programmer to cringe. Perhaps what
makes parallel-programming such a valuable skill is the learning curve that exists when trying to
wrap your head around the behavior of a GPU. When a GPU programmer invokes a kernel to
distribute computations across thousands of threads allocated to hundreds of cores in a non-
deterministic system whose proprietary compiler abstracts the behavior of hardware, the toolset to
understand system-behavior is limited. While there is no way around the migraines that result from
attempting to debug such programs, frameworks such as NVIDIA’s Visual Profiler have been built
to make this process slightly less overwhelming. Below, I describe the process of discovering the
issue that existed in the prior CUDA implementation of a parallel map-reduce algorithm and the
tools employed to remedy it.

3.3.1 Discovering the Issue

The process of discovering a bug in the existing CUDA-optimized algorithm began once I started
profiling the behavior of the supposedly optimized parallel reduction. The spam filter was designed
to terminate training once a desired accuracy was reached (<5%). However, it had gone unnoticed
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that the spam-filter also terminates training under the condition that 100 epochs had passed. I call
this condition an ‘epoch time-out.” A single training epoch is when the entire training set has been
used to update the parameter vector - the training set is repeatedly applied until the convergence
condition holds. I discovered in the process of running the optimized implementation that the GPU
program took much longer to converge than the baseline CPU implementation. In fact, any time the
program was executed and a timeout occurred, the total training time was non-deterministically

distributed across a range of wall-clock times.

Train Time vs Epochs
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Figure 8: Profiling the CUDA SGD based on runtime.

I began tinkering with other another optimization algorithm developed based on the prior one
which employed MBGD instead of a SGD for training. This also demonstrated odd behavior as any
batch sizes that used anything more than a trivial number of data points experienced a 100-epoch

timeout.

Epochs vs Batch Size
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Figure 9: Profiling the timeout condition for various CUDA MBGD batch sizes.

Because of the repeated appearance of this timeout anomaly, training accuracy was unusually high at
around 30% while the baseline CPU implementation continued to satisfy the 5% accuracy threshold.
Speaking with a former student who had worked on this implementation, it was surmised that error
rates remained high because of a condition known as ‘thread divergence.” Thread divergence occurs
when a multithreaded system containing shared memory has non-blocking operations that execute
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in an undefined manner because of poorly-managed control flow. However, when I removed the

timeout data points from my analysis, average test error remained relatively constant across CPU
SGD, MBGD, and CUDA SGD/MBDG algorithms.

Avg Test Error Excluding Timeouts

SGD BGD

MBGD CUDA SGD CUDA CUDA
MBGD1 MBGD2
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Figure 10: Average test error for various optimizations excluding timeouts.

Because of this non-deterministic functionality, I refused to believe that the GPU controlling thread
behavior would operate correctly in some scenarios but fail in others. It was clear that the issue lie
not in the hardware but in the software implementation itself. Based on the framework described in
section 3.2.2, I developed a custom training function similar to the baseline BLAS implementation
and the previous CUDA SGD algorithm.

3.3.2 Implementing the CUDA Software

I began digging into the previous CUDA implementation itself. Since the code surrounding kernel
calls in this program was relatively generic, the problem must’ve arose from either the mapping or
reduction step of the distributed (partial) dot product. After reformulating the thread distribution
methodology, I came up with a mapping implementation that accounted for a number of variables
in the program:

size_t tidx = threadldx.x;

size_t points_per_block = (blockDim.x / threads_per_datapoint); //datapoints per block
size_t point_idx = (blockIdx.x * points_per_block) + (tidx / threads_per_datapoint);

// index relative to the datapoint instead of the block

size_t relative_tidx = tidx % threads_per_datapoint;

size_t num_thread_computations = num_features/threads_per_datapoint; //# computes/thread
size_t thread_start_idx = relative_tidx * num_thread_computations;

Ultimately, this block of code describes the proper distribution of GPU threads across the input
datapoints. This accounts for a variable number of datapoints, datapoints per block, and threads per
datapoint - all different configurations that must be met for the spam-filter application. The main
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purpose of this block is to compute mutually exclusive thread bounds (#hread_start_idx,
num_thread_computations) for a kernel execution in one particular block (blockldx.x) that are passed

into a reduction function.

With this modification to the mapping scheme, I was able to obtain correct results by performing a
linear reduction across the described bounds. This involved simply looping across the thread
bounds, summing up individual partial dot-products, writing the result to shared memory, then
looping over and summing the results in shared memory for a single data point. This, however, was
an inefficient use of the GPU since it did not take advantage of the GPU’s parallel compute
capability. Instead, I designed the reduction as follows:

FeatureType partial_dot = 0;
FeatureType temp_data_i, temp_param_i;
for (size_t i = thread_start_idx;
((i<thread_start_idx + num_thread_computations) && (i<num_features)); i++)

{
temp_data_i = __ldg(data_point_i + i);
temp_param_i = __ldg(parameter_vector + i);
partial_dot += temp_data_i * temp_param_i;

}

__syncthreads();
FeatureType sum = warpReduceSum(partial_dot);
shared_memory|threadldx.x/threads_pet_datapoint] = 0;

__syncthreads();
if (relative_tidx % 32 == 0)
{

atomicAdd(&shared_memory[threadldx.x/threads_per_datapoint], sum);

!

This block of code, although short in size, is the most critical portion of the algorithm. In this
section, each thread computes a partial dot-product by performing a Multiply Accumulate (MAC) on
a section of the input data point x; and parameter vector 6. Rather than index these arrays via
standard C/C++ syntax, I invoke a load operation which is optimized for streaming (sequential)
memory accesses. Since this partial reduction may take longer for some threads, I insert a _synethreads
instruction which acts as a fence barring any thread from continuing computation until all threads in
the associated block have reached the same point. Each variable in a CUDA program is considered a
vector which stores the same variable’s value in entries of the vector for all threads (32) in a warp.
By design, threads_per_datapoint is a multiple of 32 and each element of a data point is guaranteed to
exist in the same block. By invoking warpReduceSum on the partial_dot vector, I am able to quickly
sum up elements in a warp where these elements represent 32 entries of a single datapoint. After
syncing once more, the goal is to sum up the rest of the partial dot-products for a data point. In
order to communicate across datapoint threads, each thread that computes a warp sum atomically
adds into the same region of shared memory. Each data point is reserved its own portion in this
memory structure.
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3.3.3 Debugging CUDA Software

This reduction technique yielded incorrect results at first and required deeper intervention since the
logic was sound. To do this, I simplified the problem by altering the input data points to 1024-
element vectors with entries of all 1’s. The result of such a dot product should be 1024. It turned
out, however, that the dot-product value computed was non-deterministic and arbitrarily large. This
indicated that I was either summing up the address pointers rather than the content, or there were
memoty integrity issues in which I was not actually reading/writing propetly to the shared memory

locations.

It is impossible to directly print to a console the values computed within a kernel without obtaining
what amounts to garbage. The GPU acts as a co-processor to the console-controlling CPU and
therefore must copy back data to the CPU in order to give the user any idea of what happens during
runtime. This copy, however, can only occur after a kernel call. I therefore came up with a grey-box
technique to probe the contents of GPU variables by allocating static memory for a ‘probe’ variable
on the CPU, passing this to the GPU via global memory in a kernel call, assigning the probe a value
during runtime execution of the GPU kernel, and then copying the value back to the CPU at which
point it could be printed to the console. As a result, I discovered that the shared memory within the
thread blocks had remnant data from previous kernel executions. It is therefore imperative that,
before results of a dot-product can be passed to shared memory, the memory contents must be

zeroed.
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4. Performance Analysis

There are several ways to evaluate the performance of a MIL model. From the practitioner’s

perspective, what matters most is the algorithm’s performance on unseen data. However, from a

pragmatist’s point-of-view, slightly improved test results are only worth the trouble if runtime is
reasonable. Luckily, a GPU aids us in both these regards.

The result of applying the optimized CUDA implementation of a parallel map-reduce algorithm was

about a best-case 15% speedup over the baseline CPU implementation and 26% speedup over an

unoptimized CUDA linear reduction with no significant hit to accuracy. Average test error remained

around 6.4% excluding cases where the GPU could not execute because the requested number of

threads exceeded the available GPU resources.

Below is a table of the results from a single train and test for various configurations of the LR

parameters. This was generated without taking into account the convergence scenario as a testament

to the algorithm’s raw performance without excessive overfitting from performing too many epochs.

Type Datapoints | Threads Total | Num Train Train Train FPR | Train Error | Test TPR | Test FPR | Test Error
Per Block Per Runs | Epochs Time TPR
Datapoint in Last
Run
CPUSGD | -- - 30 30 85.8341 99.99999 | 0 0 94.56522 | 1.898734 | 3.2
Baseline
CUDA 1 128 30 30 73.59577 | 98.93245 | 1.482524 1.32963 94.14855 | 3.860759 | 4.593333
SGD
Optimized
CUDA 2 128 30 30 73.20963 | 98.48613 | 0.777621 1.048889 93.36956 | 2.415612 | 3.966667
SGD
Optimized
CUDA 4 128 30 30 78.10077 | 99.38279 | 0.442177 0.506667 93.87681 3.291139 | 4.333333
SGD
Optimized
CUDA 8 128 30 30 103.434 97.59549 | 1.258503 1.680741 92.08333 | 3.765823 | 5.293333
SGD
Optimized
CUDA 1 256 30 30 119.6902 | 95.01809 | 4.074595 4.408889 92.08333 | 6.381856 | 6.946667
SGD
Optimized
CUDA 2 256 30 30 1229877 | 99.81102 | 0.234577 0.217778 94.34782 | 3.175105 | 4.086667
SGD
Optimized
Justin S. Selig, 2017 18




CUDA 4 256 30 30 173.4247 | 98.77362 | 1.035656 1.105926 93.24275 | 3.829114 | 4.906667
SGD

Optimized

CUDA 8 256 30 30 5.7368 0 0 36.84444 0 0 36.8

SGD Exceeds
Optimized Resources
CUDA 1 512 30 30 220.2363 | 99.92762 | 0.112597 0.097778 94.38406 | 3.364979 | 4.193333
SGD

Optimized

CUDA 2 512 30 30 318.1911 62.89706 | 10.7225 20.44222 65.77898 | 11.23418 | 19.69333
SGD

Optimized

CUDA 3 512 30 30 5.739667 | 0 0 36.84444 0 0 36.8

SGD Exceeds
Optimized Resources
CUDA 4 512 30 30 5.7507 0 0 36.84444 0 0 36.8

SGD Exceeds
Optimized Resources

Figure 11: Performance of Optimized CUDA SGD under various thread configurations.

As seen in Figure 11, it is interesting to note how performance degrades as the total number of

requested threads increases. Figure 12 below demonstrates that total training time increases

monotonically with an increase in the total number of threads.

Train Time (ms)
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Figure 12: Training time vs total number of requested threads.

This figure is particularly notable because, even with an increase in thread count, there is no change

in the outcome of computation. However, the time it takes for training to occur increases even with

a training set of the same size. This phenomenon likely occurs due to issues in mutual exclusion.

With the increased number of atomic memory accesses that must occur after each warp reduction,

threads must experience a spin-lock condition in which they must be scheduled to write their result
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to the shared memory resource. This result is also surprising considering the initial partial dot
product calculated via an explicit for-loop is smaller for each worker thread when there are more
threads overall. This demonstrates that, as far as runtime is concerned, many streaming memory
reads for computing partial dot-products are preferred over fewer read-modify-writes to shared

memory.
4.1 NVIDIA NSight GPU Visual Profiler

One tool provided by NVIDIA for profiling the behavior of CUDA programs is their Visual
Profiler. This tool turned out to be less helpful than anticipated since it only provided total
execution times for kernel calls and CUDA API calls (memcpy) which could be done with any
ordinary software timer. The output below shows multiple runs of the train-and-test script for the
optimized CUDA SGD. Gold represents memory-copy routines either from host-to-device (CPU to
GPU) or device-to-host (GPU to CPU). These are around 9.5ms in length. Each blue block
represents a single kernel call, about 3.5ms in length. There are multiple blocks that occur after a
single memory-copy since the algorithm executes multiple epochs which each involve a kernel

execution.
=l Process "cuda” (30147) j
= Thread 2493704064
Rurtime 4P (1 cdavemepy ———— J | cudmemcpy W cudaMemopy |
Driver API
Profiling Overhead
=! [0] Tesla K40c
=l Context 1 (CUDA)
T MemCpy (HtoD) . . .

T MemCpy (DtoH) |

(AR ERERE IlIREEEERERERI (AR RERNRREENEY AEEEEEEER RES

ANBENNEEER EERANNERNNBERLLR SENEEENNENRRENR LA REEEEE R

r1000% rvstar, L LLLLEE DO D MO E RN ERRNRRRRNNRNREE NN EEEEEEN
- ANRENEREEE SRR NN NNENENEAEINR AENEEESNENRNENE A REERRE BRI

=/ Compute

=l Streams

Default B B N |

Stream 13

Stream 14

Stream 15

Stream 16

Stream 17

Stream 18 =l

g - g
Figure 13: Timeline output of NSight: 10ms memcpy, 3.5ms per kernel call

4.2 White Box Testing Kernel Code

The output of the Visual Profiler is helpful in understanding system bottlenecks, however, it is not
so helpful when it comes to mapping these bottlenecks back to code. I scoured the internet for a
formal tool to help profile my software implementation to no avail. However, using the software
‘probe’ methodology described in section 3.3.2, I was able to make leeway on this task. As it
happens, CUDA includes a clock API that allows a programmer to measure clock cycles passed
during and within a kernel call'¥. Measuring the number of clock cycles for sections of code helped
map out the critical sections within my SGD implementation as such:
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Max Cycle Count:

For Loop: 12300

Sync: 900 —C
Warp Reduce: 7900 {

Write to Shared Mem: 4000 —={___

Atomic Add Into
Shared Mem: 9300

FeatureType partial_dot = 0;
FeatureType temp_data_i, temp_param_i;

for (size_t i = thread_start_idx;
((i<thread_start_idx + num_thread_computations) && (i<num_features)); i++)

temp_data_i = __ldg(data_point_i + i);

temp_param_i = __ldg(parameter_vector + i);

partial_dot += temp_data_i * temp_param_i;
}

__syncthreads();
FeatureType sum = warpReduceSum(partial_dot);
shared_memoty|[threadldx.x/threads_per_datapoint] = 0;

__syncthreads();
if (relative_tidx % 32 == 0)
{

atomicAdd(&shared_memory[threadldx.x/threads_per_datapoint], sum);

i

The timing results above are quite intuitive. The longest section of code that runs is the for-loop,

followed by atomic additions into shared memory, followed by the warp reduction. Thread

synchronization also consumes some wall-clock time, but is trivial compared to the other sections. It

is clear that software-defined iterations within a GPU kernel are unideal from a performance

perspective. This profile also reinforces the fact that atomic accesses (read-modify-writes) to shared

memory consume a large portion of program runtime.
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5. Discussion

The previous attempt to optimize the LR parallel compute resulted in indeterminate accuracy,
interminable execution, and undefined behavior. By examining the behavior of this program, I was
able to diagnose and remedy an algorithmic flaw. As a result of applying an optimized parallel map-
reduce in CUDA for a GPU, I was able to achieve a slight speedup over the baseline CPU. I was
also able to profile the wall-clock time for sections of my optimized code to identify potential
bottlenecks.

5.1 Future Considerations

While these results are significant and reproducible for any similar GPU platform, they come at a
cost to the developer. Although NVIDIA makes managing threads a logical task through its
multidimensional thread/block paradigm, working with such a structure is cumbersome when
adding any significant level of modularity or abstraction to the GPU software. This calls for the use
of higher-level libraries that reduce the cognitive load of managing thread indices and free a
programmer to think about the algorithm design itself. Libraries such as TensorFlow, although
written in Python, are GPU-compatible and even contain automated functionality to perform
gradient descent. Other libraries such as Torch are built directly on-top of CUDA and use custom
high-level syntax with Lua.

As for profiling the behavior of a GPU, there is not much in the way of tools that help do this. Most
GPUs abstract the Intellectual Property of the manufacturer, which includes compiler behavior and
microarchitectural details. For an NVIDIA GPU, the only acknowledged profiler available is the
NSight tool. Nonetheless, measuring bottlenecks in code is still possible through the technique
described in section 4.2.

Based on the runtime results compared to CPU, one might wonder why using an optimized
algorithm on a GPU results in only marginal speedup over baseline. For one, the 5000-sample
dataset employed is actually not that large. The total number of entries in the whole dataset is
5,120,000 (5000%1024). On a single-cycle CPU with no threading capability running on a low-power
embedded system with a low clock-speed, perhaps it might take a lot longer to run the LR algorithm
on this dataset. However, the baseline system uses an Intel Xeon Processor with 8-cores running at
2.6 GHz clock speed and employs SIMD cores for vector computations. There is not much room

for improvement unless the dataset is scaled up by an order of magnitude.
5.2 Further Optimizations
Based on the output of the NSight Visual Profiler, it is evident that repeated calls to the CUDA API

for memory copy functionality take up a small but noticeable portion of the overall runtime. Since
the same feature-vector data are used between epochs, it would be interesting to explore the
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possibility of storing weights on the GPU device in global memory for a collection of epochs. If the
GPU permits, it might also be possible to store the entire 4500-sample training set on the GPU to
eliminate the need for communication across runs. Such an optimization would remove about 10ms
from each training run.

The spam-filter may also benefit from the conversion to fixed-point representations for features and
the use of fixed-point arithmetic. This is a form of quantization that has been known to dramatically
accelerate the speed of both training and inference without significantly impacting test error rate®.

Another approach would be to modify the algorithm itself by substituting the atomic additions into
shared memory with normal addition. This lock-free approach to parameter-vector updates is
known as ‘Hogwild’ and has been shown to significantly decrease runtime without affecting test
error rate given there is some level of stochasticity to memory accesses!‘l.

It might also be worthwhile to explore the feasibility of developing an OpenCL implementation of
LR for the purpose of synthesizing hardware modules on an FPGA. Using the Vivado High-Level
Synthesis Toolkit, it may be possible, with few headaches, to pott the existing CUDA/C++
implementation to an even more specialized device that would vastly accelerate the speed of
computation with smaller power requirements.
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8. Appendix

Running the Source Code
To run the CUDA source code, follow the below procedure:

Login to en-gpenmpi04.ece.cornell.edn. This server has a GPU installed and is therefore capable
of executing CUDA code.

Clone the repository at https://github.com/cornell-zhang/parallel-programmin

Checkout branch /ss_gp? which contains functionality of master but includes the ability to run
the optimized CUDA code.

The soutce file I have added is located in parallel-programming/ Spam-Filter/ cnda and is named
sgd_single_point_optimizged_reduce.cu. The training function that calls this code is located in
main_cuda.cpp.

Running the NSight Visual Profiler

To obtain the visual profiler results of section 4.1, follow the below procedure:

SAEEER A

Open a terminal with x-forwarding capability (eg. MobaXTerm).

Run the executable located at /usr/ local/ cuda-7.5 / bin/ nsight

Click on Run = Profile in the nav bar.

The profiler acts as a remote client, so you must login with your SSH credentials.

The profiler will execute the file located at ./ bin/ cuda and output to the window a visual
timeline after running the program.
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